

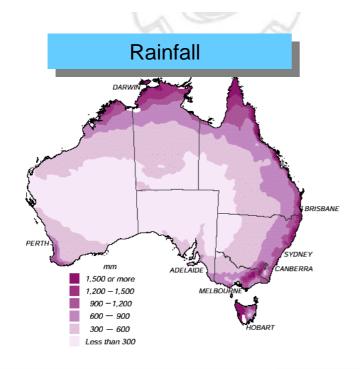
PV-Powered Desalination in Australia: Technology Development and Applications

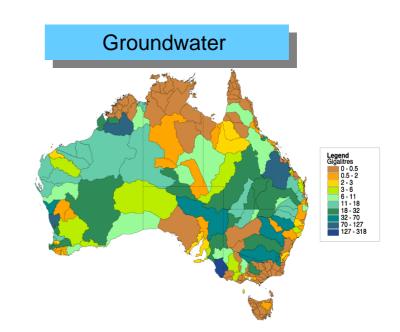
Melanie Werner¹, Dr Andrea Schäfer¹, Dr Bryce Richards², Andreas Broeckmann¹

- 1 Environmental Engineering, University of Wollongong, NSW 2522, AUSTRALIA
- 2 Centre for Sustainable Energy Systems, Australian National University, ACT 0200, AUSTRALIA

Introduction

- Background to Australian context
 - Environmental factors
 - Social factors
- The Reverse Osmosis Solar Installation (ROSI)
 - System description
 - System optimisation
- Socio-technical issues for successful operation
- Future work planned





Australia's Environment

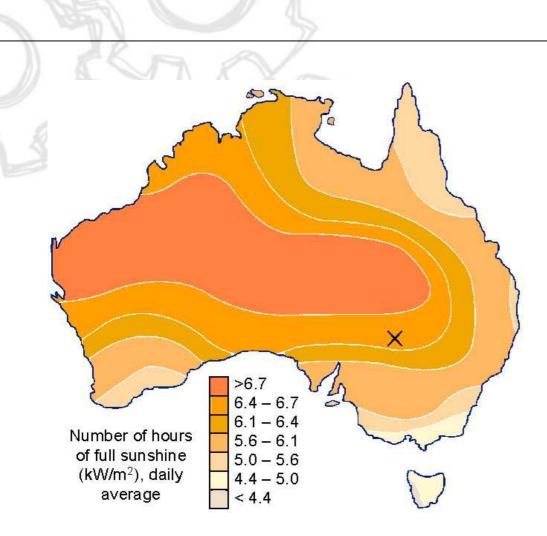
- Driest continent on Earth minimal fresh water
- Groundwater is available and commonly used

Water Quality

- Groundwater: high salinity & other contaminants
 - Arsenic, uranium, boron
- Surface / dam water: high turbidity, microorganisms

		Community				
Component	ADWG Guideline	lwontio	Yalata	Dukatia	laa Warta	Oak Valley
Component		lwantja		Pukatja		
TDS	1,000	2,240	10,100	898	1,000	3,290
Chloride	250*	683	5,190	NR	275	1,560
Sulfate	500	565	1,150	NR	175	365
Total hardness	200*	1,275	3,650	423	688	707
Iron	0.3*	9	NR	NR	1	NR

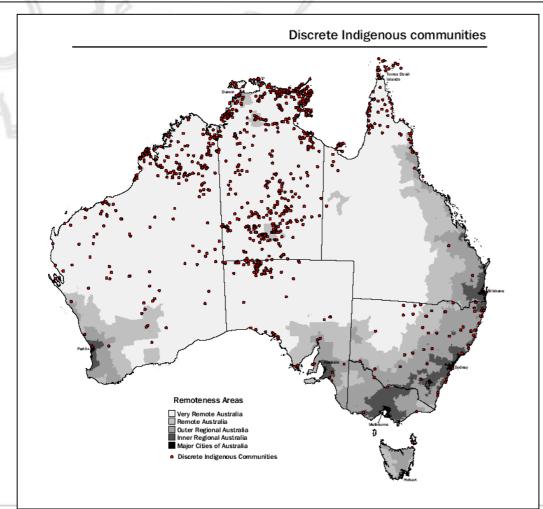
ADWG = Australian Drinking Water Guidelines (values in mg/L)TDS = Total Dissolved SaltsHardness = $CaCO_3$ NR = Not Reported


* = aesthetic guideline only

ROS

Solar Resources

- High levels of solar insolation in Central Australia
- Solar power used in some settings as an energy source


Social Factors in Central Australia

- Different groups living/travelling in remote areas:
 - Farmers
 - Indigenous (Aboriginal) communities
 - Roadhouse operators and visitors
 - National Parks rangers and visitors
 - Smalls towns with an influx of tourists
- Diverse purposes, socio-economic & cultural features
- Complexity of service provision responsibility
 - Dependent on location, community size, land ownership etc.
 - Different States & Territories involved

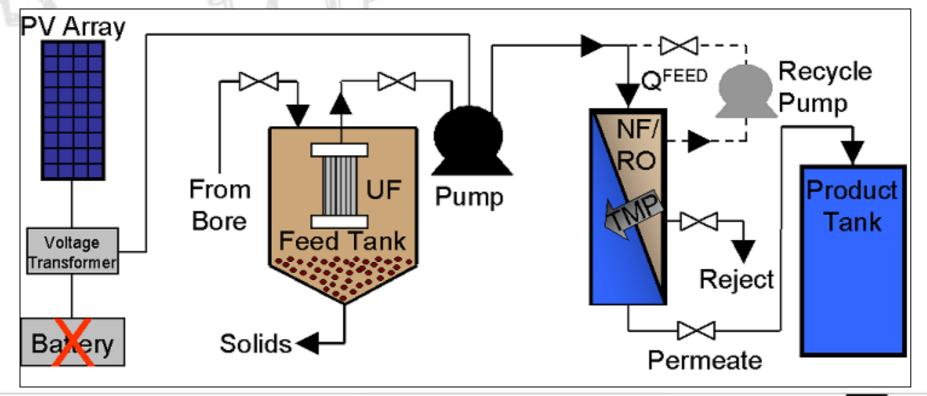
Remote Indigenous Communities

 85% of Indigenous communities (1030) in 'very remote' areas

ROSI

- 73% of communities have population <50
- Most communities in the Northern Territory and Western Australia
 Source: CHINS 2001

Reverse Osmosis Solar Installation


- Membrane Filtration + Solar Power
 - Stage 1 Membrane: Ultrafiltration
 - Removal of viruses & bacteria: physical disinfection
 - Stage 2 Membrane: Nanofiltration / Reverse Osmosis
 - Membrane choice depends on water quality
 - Removal of salt & trace contaminants
 - Solar panels (600W) with tracker provide power for:
 - Pumps
 - Logging equipment (sensors) & computer

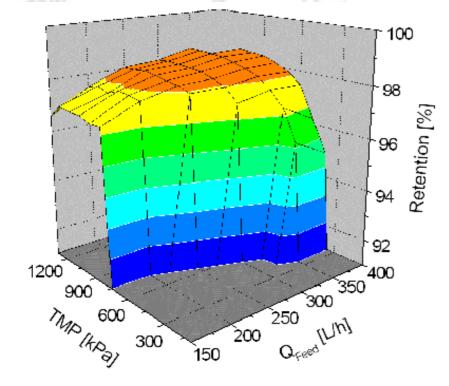
ROS

Flow Diagram of ROSI

- ROSI
- Output: up to 1000L of fresh water (permeate) & 9000L disinfected but not desalinated ('reject') per day

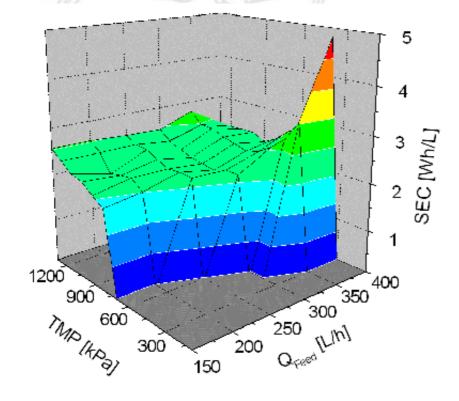
ROSI Configuration

• Proposed configuration:

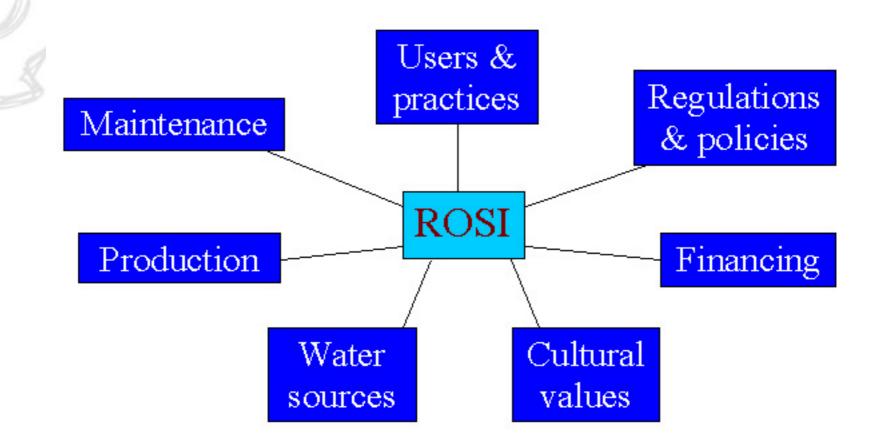

- 90% of water physically disinfected (through UF)
 - Suitable for cleaning, showering etc
- 10% of water purified through NF / RO
 - Suitable for drinking
- Centralised distribution point

• Requirements:

- Existing infrastructure: bore, pump, feed tank
- Maintenance: Under investigation


System Optimisation: ROSI Salt Retention

- Retention has to be as high as possible (at least 90%) to produce high quality drinking water
- Tested using 5g/L salt solution.


System Optimisation: ROSI Energy Consumption

- Aim: to minimise specific energy consumption (SEC): the amount of energy required to produce 1L of drinking water
- Method: Vary TMP and feed flow to produce 3D map of SEC.

ROSI in a Socio-Technical System

ROSI

Issues to Address

- Exploration of socio-technical issues to:
 - Identify barriers and opportunities for sustainable use
 - Develop strategies for ROSI's development & implementation
- Issues such as:
 - Maintenance
 - How much is required? Who could it be performed by?
 - Users & Practices
 - Current water use practices? Will ROSI support or change them?
 - Financing
 - Where will funding for purchase / ongoing costs come from?
 - Regulations & Policies
 - Does ROSI meet H₂0 requirements? Are supporting policies required?

Future Work Planned

- Field trip to Central Australia Sept/Oct 2005
 - Technology development:
 - System optimisation for different sources: bores and dams
 - Testing of As, U contaminated water sources
 - Membrane & pump performance, energy consumption investigated
 - Socio-technical investigations
 - Community water needs & responses to the technology
 - Capabilities in terms of operation and maintenance, finance etc.
- Investigate potential pilot sites
 - Assessment of most viable applications from field trip
 - Investigate potential sites for an extended trial and analysis
- Continue work with commercialisation partner
 - Approaches to production, service network, costing

Configuration for Field Trip

ROSI